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urpose. Different types of malignant hepatic lesions are difficult to diagnosis through imag-

ing modalities depending on visual assessment. To study the potential of metabolic and ra-

diomics parameters of 18F-fluorodeoxyglucose–positron emission tomography/computed 

tomography (FDG-PET/CT) in the classification of malignant hepatic lesions including 

hepatocellular carcinoma (HCC) and liver metastasis (LM) and cholangiocarcinoma (CC). 

Materials and methods. Thirty-three primary tumors from 33 patients with HCC, 34 lesions of 

LM from 15 patients, and13 lesions of cholangiocarcinoma from 9 patients were included in this 

study. The lesions have been segmented from the PET images after the CT correction, then 7 meta-

bolic features, 2 shape indices feature, and 35 radiomics features were extracted from images 

through semiautomatic method in LIFEx package. Kruskal-Wallis test was used to determine the 

significant different features. Finally, the area under the curve (AUC) was calculated to find the fea-

tures with high sensitivity to characterize the tumor types. 

Results. According to Kruskal-Wallistest,4 metabolic parameters, 1 shape indices features, and 

22 radiomics features were significantly different among tumor types. The most differentiating radi-

omics and metabolic features were GLRLM-GLNU and shape compactiy. Most of the features show 

high sensitivity to distinguish (HCC/LM) and (HCC/CC) according to the area under the curve (AUC). 

Conclusions. Radiomics features in addition to metabolic parameters and shape indices from 

FDG-PET/CT studies may be of value in characterizing different malignant hepatic tumors. 
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ель исследования. Различные типы злокачественных поражений печени трудно диа-

гностировать с помощью методов визуализации, основываясь только на визуальных 

характеристиках. Изучить потенциал метаболических и радиомических параметров 
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графии (ФДГ-ПЭТ/КТ) в классификации злокачественных  поражений  печени,  вклю- 

 

чая гепатоцеллюлярную карциному (ГЦК) и метастазы в печень (МП), а также холангиокарци-

ному (ХК). 

Материалы и методы. В исследование были включены тридцать три первичные опухоли 

у 33 пациентов с ГЦК, 34 поражения МП у 15 пациентов и 13 поражений по типу холангиокар-

циномы у 9 пациентов. Очаги поражения были сегментированы по ПЭТ-изображениям после 

КТ-коррекции, затем проведена оценка 7 метаболических признаков, 2 показателей формы и 

35 радиомических признаков на изображениях полуавтоматическим методом в пакете LIFEx. 

Тест Крускала-Уоллиса использовался для определения значимых различий признаков. Площадь 

под кривой (AUC) была рассчитана для нахождения признаков с высокой чувствительностью, 

характеризующих типы опухолей. 

Результаты. По данным теста Крускала-Уоллиса, 4 метаболических параметра, 1 харак-

теристика показателей формы и 22 радиомических признака достоверно различались с учетом 

типа опухолей. Наиболее значимыми признаками радиомики и метаболическими особенностя-

ми были GLRLM-GLNU и shape compacity. Большинство признаков показывают высокую чув-

ствительность к различиям (HCC/LM) и (HCC/CC) в зависимости от площади под кривой (AUC). 

Выводы. Особенности радиомики вместе с метаболическими параметрами и индексом 

формы на основании ФДГ-ПЭТ/КТ могут иметь значение при характеристике различных злока-

чественных опухолей печени. 
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ntroduction.  

Liver cancer consider to be one of the 

most fatal cancers types worldwide, it 

may be primary or secondary, the most 

known primary types are hepatocellular 

carcinoma (HCC) accounting  70 %[17]  and Chol-

angiocarcinoma (CC)  which is the second most 

known liver primary malignancies with approxi-

mately 10%‐25% of all hepatic malignancies[33]. 

Secondary liver cancers including tumors 

metastatic to the liver are more known than pri-

mary cancers. The most common sites of the pri-

mary tumors are breast, lung, and colorectal can-

cer[1].  

Accurate diagnosis of liver cancer is some-

times a hard process especially between HCC and 

ICC through biomarkers and radiological scans 

[18],[27]. 

Liver imaging is also done in patients with a 

history of cancer as the liver is the most frequent-

ly concerned organ by metastases. liver-imaging 

including ultrasonography (US), computed tomog-

raphy (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET) ought to 

incorporate liver lesion characterization as a nec-

essary goal[20]. 

FDG-PET may detect liver masses with good 

power in these parathion of benign from malig-

nant lesions and can be used to distinguish vari-

ous liver masses, although certain lesions may be 

difficult to diagnose correctly (7,8,9,10). 

Radiomics is a new branch that depends on 

extracting extra data from medical images using 

advanced quantitative techniques such as texture 

analysis to enhance cancer diagnosis, treatment 

planning, and assessment [13]. Recently, radi-

omics through Various modalities have shown a 

good impact in liver cancer studies, and some au-

thors use radiomics to characterize different liver 

cancers: 

Zhang et al. (2020) used CT radiomics to dif-

ferentiate combined hepatocellular and cholangio-

carcinoma (CHC) from intrahepatic cholangiocar-

cinoma (ICC) [32]. Li et al. (2017) studied radi-

omics through MRI to classify hepatic hemangio-

ma (HH), hepatic metastases (HM), and hepatocel-

lular carcinoma (HCC)[15]. 

Raman et al. (2015) used Computed tomog-

raphy texture analysis (CTTA) to classify cases of 

focal nodular hyperplasia, hepatic adenomas, 

hepatocellular carcinomas, and cases of normal 

liver parenchyma using arterial phase scans(13). 

I 
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Duda et al. (2006) used texture analysis on CT to 

classify normal liver tissue from HCC and Cholan-

giocarcinoma [6]. Yoshida et al. (2003) used ultra-

sound (US) texture analysis to distinguish benign 

(hemangiomas) from malignant (hepatocellular 

carcinomas (HCCs) and metastases) focal liver le-

sions in B-mode ultrasound images[30]. 

According to our knowledge, this is the first 

time to differentiate liver tumors using a PET 

scan. So, the current work aims to use 18 F- 

FDG-PET/CT radiomics and metabolic parameters 

to characterize different liver tumors types. 

Materials and methods. 

Patients. 

Thirty-three primary tumors from 33 pa-

tients with HCC with (29 males and 4 females 

with main age= 57.76) , 34 lesions of LM from 15 

patients (6 females with breast cancer 3 females 

and 6 males with colon cancer, with main age = 

56.4) and 13 lesions of cholangiocarcinoma from 9 

patients (5 males and 4 females, main age =54.08)  

were included. Patients were referred to our de-

partment primarily to investigate the extra-hepatic 

disease before starting an adequate management 

plan. The hepatic lesions were diagnosed by his-

topathology. The study was approved by the insti-

tutional review board (IRB), and informed consent 

was waived.  

The PET-CT scans for all patients have oc-

curred at our Institute between January 2016 and 

April 2018. 

Imaging facilities. 

The study was carried out using a PET/CT 

scanner (Siemens Biograph 128_mCT, Germany). 

Patients were situated in the PET/CT scanner up 

to 60 minutes after intravenous injection of FDG. 

The FDG dose was measured by 0.1 mCi or 3.7 

MBq for each Kg based on their weight. A non-

contrast CT scan was obtained from the base of 

the skull to the upper thigh and was used for at-

tenuation correction. The size of the images was 

200x200 pixels and the thickness of the slice was 

1mm. 

Imaging processing and analysis.  

Lesions have been segmented from PET 

scans after CT correction using three- dimensional 

(3D) semiautomatic process after that thirty-five 

radiomics parameters, eight metabolic parame-

ters, and two shape indices parameters were ob-

tained using texture analysis of PET images using 

LIFEx software version 4.0.0 

(https://www.lifexsoft.org/) [19]. Imaging inter-

pretation and analysis were performed and revised 

by a qualified radiologist with experience in read-

ing PET/CT for 15 years. Fig.1 shows the work-

flow of feature extraction in this study. 

Metabolic features. 

Metabolic parameters were extracted de-

pending on the standardized uptake value (SUV) 

which is defined as the tissue concentration of 

tracer as measured by a PET scanner divided by 

the activity injected and the body weight [11]. 

Many parameters related to SUV have been used 

in this study. 

SUVmax. 

Defined as maximum value of SUV in the 

area of interest, which is the commonly used SUV 

clinically. 

SUV mean. 

The mean SUV value in the area of interest.   

SUVmin. 

The minimum SUV value in the region of in-

terest. 

SUVstd. 

The standard deviation of SUVin the region of 

interest. 

Metabolic tumor volume (MTV). 

Measures the active volume in ml 

Total Lesion Glycolysis (TLG). 

The product of SUV mean and MTV [14].  

SUVpeak. 

Reflects the SUV in a sphere with a volume 

of 1 mL and is located so that the average value in 

the volume of interest is maximum. 

Intra tumor heterogeneity SUV(std/mean). 

Using the coefficient of variation (COV), de-

fined as the ratio between the standard deviation 

of SUV values and the mean SUV value within the 

delineated MTV value, the 18F-FDG uptake heter-

ogeneity was estimated [8]. 

Shape indices features.   

Sphericity and Compacity measure how 

spherical or compact a Volume of Interest, respec-

tively. 

Radiomics features.  

Thirty-five radiomics features are studied. 

Histogram indices derived after determination of 

bin width, the gray level co-occurrence matrix 

(GLCM) takes under consideration the arrange-

ments of pairs of voxels to calculate textural indi-

ces, the neighborhood gray-level different matrix 

(NGLDM) corresponds to the distinction of gray-

level between one voxel and its twenty-six neigh-

bors in three dimensions. The gray-level run 

length matrix (GLRLM) provides the scale of con-

sistent runs for every gray-level. The gray-level 

zone length matrix (GLZLM) provides data on the 

scale of consistent zones for every gray-level in 

three dimensions. More details about the radi-

omics features used in this study can be found at: 

(https://lifexsoft.org/index.php/resources/

19-texture/radiomicfeatures?filter_tag [0]=)  

Statistical analysis. 

Kruskal-Wallis test was used to obtain the 

difference between the features included in this 

study through the three cancer groups in 3D 

mode. AUC (area under the curve) was obtained 

from ROC (Receiver Operating Characteristics) 
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curve for the significant parameters. The signifi-

cance value for the tests was 0.05. The tests oper-

ated using IBM-SPSS Statistics package (version 

19, SPSS Inc., Chicago, IL, USA). 

Results. 

Kruskal-Wallis test was applied to the fea-

tures of the three groups as shown in table 1. Re-

garding the metabolic parameters, 8 features were 

extracted from PET tumors images and 3 of them 

were statistically significantly different among the 

three groups, including SUVmin with H= 29.8 and 

p <0.0001, TLG 25.8 and p< 0.0001and MTV 

H=12.51 and p<0.002. 

Regarding radiomics features, 22 features 

from a total of 35 were statistically different, the 

highest was gray-level non-uniformity for the run 

(GLRLM_GLNU) with  H=36.62 and p 

<0.0001.From the two shape indices parameters, 

compacity was highly statistically significant with 

H value =34.54 and p <0.0001 while sphericity 

was statistically stable through the 3 groups.  

The area under the curve (AUC) was derived 

from the receiver of characteristics (ROC) curve for 

the features with significant difference to obtain 

features that can distinguish between types of 

cancer, as shown in table 2. Most features were 

sensitive to classify HCC from LM and HCC from 

CC but no feature can differentiate between LM 

and CC. The highest significant radiomics features 

were GLRLM_GLNU with AUC = 0.92(95% CI: 

0.87–0.98), 0.83(95%CI:0.7-0.96) in HCC/LM and 

(HCC/CC) respectively and NGLDM-Busyness 

with AUC = 0.86(95% CI: 0.77–0.95) in case of 

(HCC/CC) and AUC= 0.86(95%CI:0.74-0.9) in case 

of (HCC/LM). 

Where all features could not differentiate 

(LM/CC) accurately, most of the features have 

AUC less than 0.6. 

Discussion. 

Radiomics may differentiate benign from 

malignant tumors and can identify primary from 

secondary cancer in cases with lung [12],[28],[3], 

brain [31], and breast[10] cancers. 

According to the Kruskal-Wallis test, there 

were 3 metabolic parameters, 22 radiomics fea-

tures, and one shape indices, with significant dif-

ferences among different malignant hepatic tumor 

types. Fig 2,3,4 show display a PET scan for cases 

of HCC, liver metastasis, and cholangiocarcinoma 

respectively in PET 3D segmentation and fused 

images with significant values.Fig.5 shows a box 

plot of the tumor types in shape compacity and 

GLRLM_GLNU. Furthermore, most of GLRLM and 

GLZLM features were significantly different.  

 From grey level co-occurrence matrix GLCM 

and histogram based features only correlation and 

kurtosis respectively were significantly different, 

Holli et al.(2010) found only MRI GLCM- features 

can differentiate breast cancer types using 

MRI[10], Kreinko et al. (2018) found that histo-

gram based feature scan differentiate histological 

stages and classify lesions as primary or metastat-

ic, of  lung cancer using PET scan [12]. 

To discover the ability of features to differen-

tiate between each pair of tumors types, the area 

under the curve (AUC) was derived from the re-

ceiver of characteristics (ROC) curve. Most of the 

features show a high sensitivity to distinguish be-

tween (HCC/LM) and (HCC/CC). 

Sarioglu1 et al.(2020) founded that 

GLRLM_GLNU and NGLDM-Busyness can differ-

entiate pediatric craniofacial rhabdomyosarcoma 

(RMS) from infantile hemangioma (IH) in MRI im-

ages [25] . Palumbo et  al. (2020) reported that 

SUV min, NGLDM-Busyness, and contrast can 

differentiate between benign and malignant soli-

tary pulmonary nodules using PET imag-

es[22].Yang et al. (2019) founded that 

GLRLM_GLNU can classify mucinous cystadeno-

ma and serous cystadenoma in CT images [29]. 

Our et al. (2018) reported that TLG and 

NGLDM_Contrast can distinguish between breast 

lymphoma and breast carcinoma in PET images 

with AUC higher than 0.7 [21] which agree with 

our findings. 

In our study most features were sensitive to 

classify HCC from LM and HCC from CC. Duda et 

al. (2006) reported that first-order features, 

GLCM, GLRLM features can accurately classify 

HCC from CC and enhance diagnosis in different 

multiphase CT images[6]. Duda et al. (2013) re-

ported that first order features, GLCM GLDM can 

classify HCC and CC from normal tissue and fi-

brosis[7]. Mala et al. (2007) used GLCM to classify 

HCC and CC with other liver cancer types in CT 

images [16].  

Some authors reported using radiomics to 

classify between HCC and LM in different images 

phases of triphasic CT. Quatrehomme et al. (2013 

) used first order features [23]. Chei et al. (2013) 

used first order features, GLCM[4]. Where Li et al. 

(2017) used MRI to differentiate HCC and LM 

through GLCM and GLRLM [15]. 

Study limitations. 

Limitations of our study may include the 

relatively small sample size especially in cholangi-

ocarcinoma due its low incidence, and restricted 

number of features. Our research was taken from 

a single center and the extension of findings to the 

other centers would need to validate its reproduc-

ibility, which will be extended in our future 

works? 

Another limitation is that the clinical cours-

es of the disease and liver functions have not been 

compared with Radiomics. However, the focus of 

that investigation was to enhance the performance 

of FDG-PET/CT in classification various liver ma-

lignancies which gives promising results in this 
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point as new tool to enhance liver cancer diagno-

sis. 

Conclusion. 

In conclusion, hepatocellular carcinoma, 

cholangiocarcinoma, and hepatic metastasis could  

 

be differentiated by utilizing several radiomics fea-

tures, metabolic parameters, and shape compacity 

indecencies from FDG-PET/CT. The most sensi-

tive radiomics feature is Gray-Level Non-

Uniformity for run (GLRLM_GLNU). The most sen-

sitive metabolic parameter are TLG, MTV and SU-

Vmin. 
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