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urpose. Different types of malignant hepatic lesions are difficult to diagnosis through imag-
ing modalities depending on visual assessment. To study the potential of metabolic and ra-
diomics parameters of 18F-fluorodeoxyglucose—positron emission tomography/computed
tomography (FDG-PET/CT) in the classification of malignant hepatic lesions including
hepatocellular carcinoma (HCC) and liver metastasis (LM) and cholangiocarcinoma (CC).
Materials and methods. Thirty-three primary tumors from 33 patients with HCC, 34 lesions of
LM from 15 patients, and13 lesions of cholangiocarcinoma from 9 patients were included in this
study. The lesions have been segmented from the PET images after the CT correction, then 7 meta-
bolic features, 2 shape indices feature, and 35 radiomics features were extracted from images
through semiautomatic method in LIFEx package. Kruskal-Wallis test was used to determine the
significant different features. Finally, the area under the curve (AUC) was calculated to find the fea-
tures with high sensitivity to characterize the tumor types.
Results. According to Kruskal-Wallistest,4 metabolic parameters, 1 shape indices features, and
22 radiomics features were significantly different among tumor types. The most differentiating radi-
omics and metabolic features were GLRLM-GLNU and shape compactiy. Most of the features show
high sensitivity to distinguish (HCC/LM) and (HCC/CC) according to the area under the curve (AUC).
Conclusions. Radiomics features in addition to metabolic parameters and shape indices from
FDG-PET/CT studies may be of value in characterizing different malignant hepatic tumors.
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AUPPEPEHLUAALHAA AUATHOCTUKA 3AOKAYECTBEHHbIX ONYXOAEHN
NEYEHU: OCOBEHHOCTU PAAUOMUKU U METABOAU3MA 18F-PAT NIT/KT
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€JIb uccileqOoBaHuA. Pa3AndHbIe THUITHI 3A0KAYE€CTBEHHBIX IIOPaKEHHH IIe4YeHU TPYLHO aAva-
THOCTHPOBATE C IIOMOIIBI0 METOAOB BH3yaAHW3allWH, OCHOBBIBASCH TOABKO Ha BH3YaABHBIX
XapaKTepUCTHKaX. V3y4duTh IOTEeHIIMaA MeTabOAMYEeCKHX H PaIuOMUYECKUX IIapaMeTpoB
18F-(pTope30KCUTAIOKO30-II03UTPOHHO-3MHUCCHOHHON TOMOrpaduu / KOMIIBIOTEPHOH TOMO-
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rpacduu (PAI-I19T/KT) B kaaccuprKaiy 3A0Ka4eCTBEHHBIX [IOPAsKEHUH II€YeHH, BKAIO-

gas remnarolesstorspHyto KapuuHoMmy ('LIK) m meracrassl B nedeHb (MII), a Takske XOaaHTHOKapIIU-
HOMy (XK).

Marepuasnsl u MeToabl. B nccaemoBanmue OBIAM BKAIOYEHBI TPUALATE TPH IEPBHYHBIE OIYXOAH
y 33 nmanuenToB c 'lIK, 34 nopaskenus MII y 15 namuesToB U 13 mmopakeHUH 110 TUILY XOAQHTHOKAP-
IIUHOMEBI Vv 9 manmeHToB. O4yaru IopaxkKeHus OBIAM CeTMEeHTHPOBAaHBI 1o [19T-u306pakeHUsIM MocAe
KT-xkoppekiiy, 3aTeM IIpOBefieHa OIleHKA 7 MeTabOAMYeCcKHX IIPH3HAKOB, 2 IMoKasareaedl popMbI U
35 pagroMHYEeCKHX MPU3HAKOB Ha H300pazkeHHAX MOAYABTOMAaTHYECKHUM MeTomoM B mnakere LIFEx.
Tect Kpyckaaa-Yoaarca HCIIOAB30BAACS [IASI OIIPEAEACHUS 3HAYNMbBIX Pa3AWdUi IIPU3HAKOB. [laomans
non KpuBoit (AUC) Oblaa paccuuTaHa OAS HAXOXIAEHHS MPU3HAKOB C BBICOKOM YyBCTBUTEABHOCTBIO,
XapaKTEPHU3YIOMIUX THUIIBI OIIYXOAECH.

Pesyarwrarel. [lo nausbivM Tecta Kpyckasa-Yoaanca, 4 meraboandecKux rnapamerpa, 1 xapak-
TEePUCTHKA IToKazaTeaell popMbl U 22 pagUOMHYECKHUX IIPHU3HAKA JOCTOBEPHO PA3AWYAAUCE C YIETOM
TUIa ornyxoaeii. Hanboaee 3HAYMMBIMU HPH3HAKAMH PAIHOMHUKU H MeTabOAMYECKUMH OCOOEHHOCTS-
mu 6b1am GLRLM-GLNU u shape compacity. BoABIIIHHCTBO IIPHU3HAKOB ITOKA3bIBAIOT BBICOKYIO YyB-
CTBUTEABHOCTS K pasanuuaMm (HCC/LM) u (HCC/CC) B 3aBHCHMOCTH OT IAomIaau o Kpusoit (AUC).

BreiBogbr. OCOGEHHOCTH PAIUOMUKN BMECTe C MeTabOAMYECKUMU ITapaMeTpaMH M HHIEKCOM
¢dopmsbl Ha ocHoBauuu O/AT-IIOT/KT MoryT uMeTh 3HAYEHHE IPH XapPaKTEPUCTHUKE PA3AMYHBIX 3A0KAa-
4YECTBEHHBIX OIIyXOAeH IIeYeHHU.
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ntroduction.

Liver cancer consider to be one of the

most fatal cancers types worldwide, it

may be primary or secondary, the most

known primary types are hepatocellular
carcinoma (HCC) accounting 70 %[17] and Chol-
angiocarcinoma (CC) which is the second most
known liver primary malignancies with approxi-
mately 10%-25% of all hepatic malignancies[33].

Secondary liver cancers including tumors
metastatic to the liver are more known than pri-
mary cancers. The most common sites of the pri-
mary tumors are breast, lung, and colorectal can-
cer[1].

Accurate diagnosis of liver cancer is some-
times a hard process especially between HCC and
ICC through biomarkers and radiological scans
[18],[27].

Liver imaging is also done in patients with a
history of cancer as the liver is the most frequent-
ly concerned organ by metastases. liver-imaging
including ultrasonography (US), computed tomog-
raphy (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET) ought to
incorporate liver lesion characterization as a nec-
essary goal[20].
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FDG-PET may detect liver masses with good
power in these parathion of benign from malig-
nant lesions and can be used to distinguish vari-
ous liver masses, although certain lesions may be
difficult to diagnose correctly (7,8,9,10).

Radiomics is a new branch that depends on
extracting extra data from medical images using
advanced quantitative techniques such as texture
analysis to enhance cancer diagnosis, treatment
planning, and assessment [13]. Recently, radi-
omics through Various modalities have shown a
good impact in liver cancer studies, and some au-
thors use radiomics to characterize different liver
cancers:

Zhang et al. (2020) used CT radiomics to dif-
ferentiate combined hepatocellular and cholangio-
carcinoma (CHC) from intrahepatic cholangiocar-
cinoma (ICC) [32]. Li et al. (2017) studied radi-
omics through MRI to classify hepatic hemangio-
ma (HH), hepatic metastases (HM), and hepatocel-
lular carcinoma (HCC)[15].

Raman et al. (2015) used Computed tomog-
raphy texture analysis (CTTA) to classify cases of
focal nodular hyperplasia, hepatic adenomas,
hepatocellular carcinomas, and cases of normal
liver parenchyma using arterial phase scans(13).
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Duda et al. (2006) used texture analysis on CT to
classify normal liver tissue from HCC and Cholan-
giocarcinoma [6]. Yoshida et al. (2003) used ultra-
sound (US) texture analysis to distinguish benign
(hemangiomas) from malignant (hepatocellular
carcinomas (HCCs) and metastases) focal liver le-
sions in B-mode ultrasound images[30].

According to our knowledge, this is the first
time to differentiate liver tumors using a PET
scan. So, the current work aims to use 18 F-
FDG-PET/CT radiomics and metabolic parameters
to characterize different liver tumors types.

Materials and methods.

Patients.

Thirty-three primary tumors from 33 pa-
tients with HCC with (29 males and 4 females
with main age= 57.76) , 34 lesions of LM from 15
patients (6 females with breast cancer 3 females
and 6 males with colon cancer, with main age =
56.4) and 13 lesions of cholangiocarcinoma from 9
patients (5 males and 4 females, main age =54.08)
were included. Patients were referred to our de-
partment primarily to investigate the extra-hepatic
disease before starting an adequate management
plan. The hepatic lesions were diagnosed by his-
topathology. The study was approved by the insti-
tutional review board (IRB), and informed consent
was waived.

The PET-CT scans for all patients have oc-
curred at our Institute between January 2016 and
April 2018.

Imaging facilities.

The study was carried out using a PET/CT
scanner (Siemens Biograph 128 _mCT, Germany).
Patients were situated in the PET/CT scanner up
to 60 minutes after intravenous injection of FDG.
The FDG dose was measured by 0.1 mCi or 3.7
MBq for each Kg based on their weight. A non-
contrast CT scan was obtained from the base of
the skull to the upper thigh and was used for at-
tenuation correction. The size of the images was
200x200 pixels and the thickness of the slice was
1mm.

Imaging processing and analysis.

Lesions have been segmented from PET
scans after CT correction using three- dimensional
(3D) semiautomatic process after that thirty-five
radiomics parameters, eight metabolic parame-
ters, and two shape indices parameters were ob-
tained using texture analysis of PET images using
LIFEx software version 4.0.0
(https:/ /www.lifexsoft.org/) [19]. Imaging inter-
pretation and analysis were performed and revised
by a qualified radiologist with experience in read-
ing PET/CT for 15 years. Fig.1 shows the work-
flow of feature extraction in this study.

Metabolic features.

Metabolic parameters were extracted de-
pending on the standardized uptake value (SUV)

| www.rejr.ru | REJR. 2021; 11 (2):165-170

which is defined as the tissue concentration of
tracer as measured by a PET scanner divided by
the activity injected and the body weight [11].
Many parameters related to SUV have been used
in this study.

SUVmax.

Defined as maximum value of SUV in the
area of interest, which is the commonly used SUV
clinically.

SUV mean.

The mean SUV value in the area of interest.

SUVmin.

The minimum SUV value in the region of in-
terest.

SUVstd.

The standard deviation of SUVin the region of
interest.

Metabolic tumor volume (MTV).

Measures the active volume in ml

Total Lesion Glycolysis (TLG).

The product of SUV mean and MTV [14].

SUVpeak.

Reflects the SUV in a sphere with a volume
of 1 mL and is located so that the average value in
the volume of interest is maximum.

Intra tumor heterogeneity SUV(std/mean).

Using the coefficient of variation (COV), de-
fined as the ratio between the standard deviation
of SUV values and the mean SUV value within the
delineated MTV value, the 18F-FDG uptake heter-
ogeneity was estimated [8].

Shape indices features.

Sphericity and Compacity measure how
spherical or compact a Volume of Interest, respec-
tively.

Radiomics features.

Thirty-five radiomics features are studied.
Histogram indices derived after determination of
bin width, the gray level co-occurrence matrix
(GLCM) takes under consideration the arrange-
ments of pairs of voxels to calculate textural indi-
ces, the neighborhood gray-level different matrix
(NGLDM) corresponds to the distinction of gray-
level between one voxel and its twenty-six neigh-
bors in three dimensions. The gray-level run
length matrix (GLRLM) provides the scale of con-
sistent runs for every gray-level. The gray-level
zone length matrix (GLZLM) provides data on the
scale of consistent zones for every gray-level in
three dimensions. More details about the radi-
omics features used in this study can be found at:

(https:/ /lifexsoft.org/index.php/resources/
19-texture/radiomicfeatures?filter_tag [0]=)

Statistical analysis.

Kruskal-Wallis test was used to obtain the
difference between the features included in this
study through the three cancer groups in 3D
mode. AUC (area under the curve) was obtained
from ROC (Receiver Operating Characteristics)
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curve for the significant parameters. The signifi-
cance value for the tests was 0.05. The tests oper-
ated using IBM-SPSS Statistics package (version
19, SPSS Inc., Chicago, IL, USA).

Results.

Kruskal-Wallis test was applied to the fea-
tures of the three groups as shown in table 1. Re-
garding the metabolic parameters, 8 features were
extracted from PET tumors images and 3 of them
were statistically significantly different among the
three groups, including SUVmin with H= 29.8 and
p <0.0001, TLG 25.8 and p< 0.000land MTV
H=12.51 and p<0.002.

Regarding radiomics features, 22 features
from a total of 35 were statistically different, the
highest was gray-level non-uniformity for the run
(GLRLM_GLNU)  with H=36.62 and p
<0.0001.From the two shape indices parameters,
compacity was highly statistically significant with
H value =34.54 and p <0.0001 while sphericity
was statistically stable through the 3 groups.

The area under the curve (AUC) was derived
from the receiver of characteristics (ROC) curve for
the features with significant difference to obtain
features that can distinguish between types of
cancer, as shown in table 2. Most features were
sensitive to classify HCC from LM and HCC from
CC but no feature can differentiate between LM
and CC. The highest significant radiomics features
were GLRLM_GLNU with AUC = 0.92(95% CI:
0.87-0.98), 0.83(95%CI:0.7-0.96) in HCC/LM and
(HCC/CC) respectively and NGLDM-Busyness
with AUC = 0.86(95% CI: 0.77-0.95) in case of
(HCC/CC) and AUC= 0.86(95%CI:0.74-0.9) in case
of (HCC/LM).

Where all features could not differentiate
(LM/CC) accurately, most of the features have
AUC less than 0.6.

Discussion.

Radiomics may differentiate benign from
malignant tumors and can identify primary from
secondary cancer in cases with lung [12],[28],[3],
brain [31], and breast[10] cancers.

According to the Kruskal-Wallis test, there
were 3 metabolic parameters, 22 radiomics fea-
tures, and one shape indices, with significant dif-
ferences among different malignant hepatic tumor
types. Fig 2,3,4 show display a PET scan for cases
of HCC, liver metastasis, and cholangiocarcinoma
respectively in PET 3D segmentation and fused
images with significant values.Fig.5 shows a box
plot of the tumor types in shape compacity and
GLRLM_GLNU. Furthermore, most of GLRLM and
GLZLM features were significantly different.

From grey level co-occurrence matrix GLCM
and histogram based features only correlation and
kurtosis respectively were significantly different,
Holli et al.(2010) found only MRI GLCM- features
can differentiate breast cancer types using
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MRI[10], Kreinko et al. (2018) found that histo-
gram based feature scan differentiate histological
stages and classify lesions as primary or metastat-
ic, of lung cancer using PET scan [12].

To discover the ability of features to differen-
tiate between each pair of tumors types, the area
under the curve (AUC) was derived from the re-
ceiver of characteristics (ROC) curve. Most of the
features show a high sensitivity to distinguish be-
tween (HCC/LM) and (HCC/CC).

Sarioglul et al.(2020) founded that
GLRLM_GLNU and NGLDM-Busyness can differ-
entiate pediatric craniofacial rhabdomyosarcoma
(RMS) from infantile hemangioma (IH) in MRI im-
ages [25] . Palumbo et al. (2020) reported that
SUV min, NGLDM-Busyness, and contrast can
differentiate between benign and malignant soli-
tary pulmonary nodules using PET imag-
es[22].Yang et al. (2019) founded that
GLRLM_GLNU can classify mucinous cystadeno-
ma and serous cystadenoma in CT images [29].

Our et al. (2018) reported that TLG and
NGLDM_Contrast can distinguish between breast
lymphoma and breast carcinoma in PET images
with AUC higher than 0.7 [21] which agree with
our findings.

In our study most features were sensitive to
classify HCC from LM and HCC from CC. Duda et
al. (2006) reported that first-order features,
GLCM, GLRLM features can accurately classify
HCC from CC and enhance diagnosis in different
multiphase CT images[6]. Duda et al. (2013) re-
ported that first order features, GLCM GLDM can
classify HCC and CC from normal tissue and fi-
brosis[7]. Mala et al. (2007) used GLCM to classify
HCC and CC with other liver cancer types in CT
images [16].

Some authors reported using radiomics to
classify between HCC and LM in different images
phases of triphasic CT. Quatrehomme et al. (2013
) used first order features [23]. Chei et al. (2013)
used first order features, GLCM[4]. Where Li et al.
(2017) used MRI to differentiate HCC and LM
through GLCM and GLRLM [15].

Study limitations.

Limitations of our study may include the
relatively small sample size especially in cholangi-
ocarcinoma due its low incidence, and restricted
number of features. Our research was taken from
a single center and the extension of findings to the
other centers would need to validate its reproduc-
ibility, which will be extended in our future
works?

Another limitation is that the clinical cours-
es of the disease and liver functions have not been
compared with Radiomics. However, the focus of
that investigation was to enhance the performance
of FDG-PET/CT in classification various liver ma-
lignancies which gives promising results in this
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point as new tool to enhance liver cancer diagno-
sis.

Conclusion.

In conclusion, hepatocellular carcinoma,
cholangiocarcinoma, and hepatic metastasis could

be differentiated by utilizing several radiomics fea-
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